

STAD-B

Балансировочные клапаны

Балансировочный клапан для систем горячего водоснабжения

| Engineering GREAT Solutions

STAD-B

STAD-В - балансировочный клапан для систем горячего водоснабжения. Обеспечивает точную гидравлическую балансировку, а также широкие измерительные и диагностические возможности. Корпус и другие части клапана окрашены методом электрофореза с высокой устойчивостью к коррозии, потере цинка и отложению накипи. Идеально подходит для использования в системах циркуляции горячей воды.

Ключевые особенности

> Рукоятка

Рукоятка с возможностью считывания показаний обеспечивает точность и простоту балансировки. Запорная функция позволяет облегчить техническое обслуживание.

Самоуплотняющиеся измерительные штуцеры

Гарантируют простоту и точность балансировки.

Окраска методом электрофореза

Идеально подходит для использования в системах горячего водоснабжения.

Технические характеристики

Область применения:

Системы тепло- и холодоснабжения Системы водоснабжения

Функция:

Балансировка Предварительная настройка Измерение Закрытие Дренаж (выборочно)

Диапазон размеров:

DN 10-50

Номинальное давление:

PN 20

Температура:

Макс. рабочая температура: 120°C По вопросу более высоких температур (макс. 150°C) обращайтесь в ближайшее представительство по продажам.

Мин. рабочая температура: -20°C

Материал:

Клапаны выполнены из сплава AMETAL®

Уплотнение седла: Стержень с прокладкой из каучука EPDM Уплотнение штока: Прокладка из каучука EPDM

Рукоятка: Полиамид и ТРЕ

AMETAL® - это разработанный компанией IMI Hydronic Engineering медный сплав, устойчивый к потере цинка.

Обработка поверхностей:

Окраска методом электрофореза.

Маркировка:

Корпус: TA, PN 20/150, DN и размер в дюймах.

Рукоятка: Тип клапана и DN.

Одобрение:

WRAS (одобрен для использования в системах водоснабжения с макс. давлением 16 бар и макс. рабочей температурой 85°C)

Измерительные штуцеры

Измерительные штуцеры выполнены самоуплотняющимися. Открутите защитный колпачок и вставьте зонд через уплотнение.

Дренаж

Клапаны с дренажным устройством для подсоединения к шлангу G1/2 и G3/4.

Клапаны без дренажа снабжены защитным колпачком.

Защитный колпачок можно временно удалить и установить дренажное устройство, поставляемое в качестве дополнительного оборудования.

Подбор

Если известны Δр и требуемый расход, для расчета Kv пользуйтесь данными формулами или диаграммой.

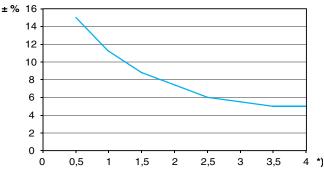
$$Kv = 0.01 \frac{q}{\sqrt{\Delta p}}$$
 $q \pi/4, \Delta p \kappa \Pi a$

$$Kv = 36 \frac{q}{\sqrt{\Delta p}}$$
 q л/с, Δp кПа

Значения Ку

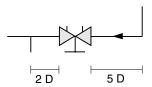
Обороты	DN 10/09	DN 15/14	DN 20	DN 25	DN 32	DN 40	DN 50
0.5	-	0.0479	0.444	0.495	1.05	1.71	2.25
1	0.0408	0.118	0.658	0.948	1.93	3.17	3.83
1.5	0.0805	0.251	1.07	2.09	3.25	4.78	6.74
2	0.238	0.518	1.80	3.91	5.49	6.55	11.4
2.5	0.443	0.870	2.87	5.60	8.07	9.63	15.7
3	0.810	1.38	3.84	6.99	10.1	13.3	21.0
3.5	1.17	1.93	4.65	7.93	11.9	16.9	26.6
4	1.33	2.32	5.35	8.25	13.7	20.1	31.4

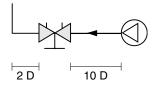
Точность измерения


Нулевое положение рукоятки откалибровано и не подлежит изменению.

Отклонение расхода при различных величинах настройки

Кривая (Рис. 4) справедлива для клапанов с обычными патрубками (Рис. 5). Избегайте установки клапанов в непосредственной близости от насосов и запорной арматуры.


Клапан может быть установлен против направления потока. Для такого направления действительны те же характеристики, однако погрешность может быть больше (максимум на 5%).


Рис. 4

^{*)} Настройка, число оборотов.

Рис. 5

Настройка

Настройка клапана на требуемую величину перепада давления, например, соответствующую 2,3 оборотам на графике, осуществляется следующим образом:

- 1. Полностью закройте клапан (Рис.1).
- 2. Откройте клапан на 2.3 оборота (Рис.2).
- 3. С помощью 3 мм регулировочного ключа поверните внутренний шток по часовой стрелке до конца.
- 4. Теперь клапан настроен.

Для проверки настройки: Закройте клапан, индикатор показывает 0.0. Откройте клапан до упора. Индикатор покажет величину настройки, в данном случае 2.3 (Рис. 2).

Диаграммы, показывающие перепад давления для каждого размера клапана при различных настройках и диапазонах расхода, помогут выбрать правильный размер клапана и значение настройки (перепад давления).

Четыре оборота открывают клапан полностью (Рис. 3). Дальнейшее его открытие не увеличивает расход.

Рис. 1 Клапан закрыт

Рис. 2 Клапан настроен - значение 2.3

Рис. 3 Клапан полностью открыт

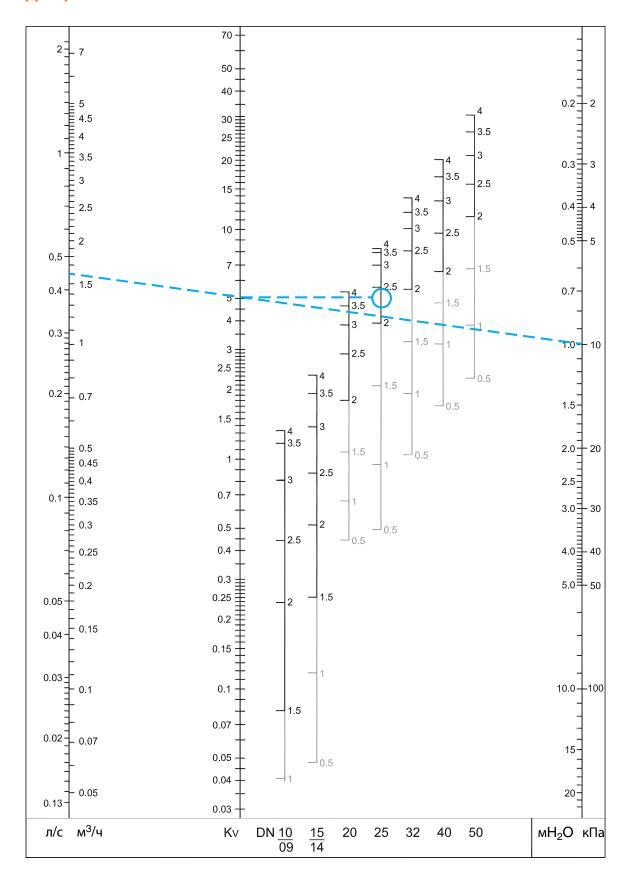
Диаграмма (пример)

Требуется:

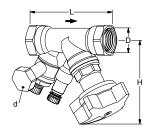
Найти величину настройки для DN 25 при заданном расходе 1,6 м 3 /ч и перепаде давления в 10 кПа.

Решение:

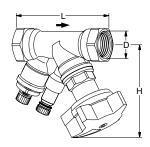
Соединяем прямой точки 1,6 м 3 /ч и 10 кПа. Получим Kv=5. Теперь проведем горизонтальную линию через Kv=5. Ее пересечение со шкалой настройки для DN 25 дает 2,35 оборотов.


ВНИМАНИЕ:

Если величины расхода выходят за рамки шкалы диаграммы, то считывание выполняют следующим образом: Как в примере (выше),имеем 10 кПа, Kv=5 и расход 1.6 м³/ч.


При 10 кПа и V=0.5 расход будет 0,16 м³/ч, а при V=50 получим расход 16 м³/ч. Это значит, что для данного перепада давления величины расхода и V0 находим простым перемещением запятой.

Диаграмма


Артикулы изделий

Внутренняя резьба

Резьба в соответствии с ISO 228. Длина резьбы в соответствии с ISO 7/1. С дренажем

DN	D	L	Н	Kvs	Кг	№ изделия
d = G1/	2					
10/09	G3/8	83	100	1,33	0,65	52 551-209
15/14	G1/2	90	100	2,32	0,68	52 551-214
20	G3/4	97	100	5,35	0,77	52 551-220
25	G1	110	105	8,25	0,93	52 551-225
32	G1 1/4	124	110	13,7	1,3	52 551-232
40	G1 1/2	130	120	20,1	1,6	52 551-240
50	G2	155	120	31,4	2,4	52 551-250
d = G3/	4					
10/09	G3/8	83	100	1,33	0,65	52 551-609
15/14	G1/2	90	100	2,32	0,68	52 551-614
20	G3/4	97	100	5,35	0,77	52 551-620
25	G1	110	105	8,25	0,93	52 551-625
32	G1 1/4	124	110	13,7	1,3	52 551-632
40	G1 1/2	130	120	20,1	1,6	52 551-640
50	G2	155	120	31,4	2,4	52 551-650

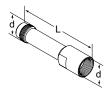
Внутренняя резьба

Резьба в соответствии с ISO 228. Длина резьбы в соответствии с ISO 7/1. Без дренажа (может быть установлен в процессе эксплуатации).

DN	D	L	Н	Kvs	Кг	№ изделия
10/09	G3/8	83	100	1,33	0,58	52 551-009
15/14	G1/2	90	100	2,32	0,62	52 551-014
20	G3/4	97	100	5,35	0,72	52 551-020
25	G1	110	105	8,25	0,88	52 551-025
32	G1 1/4	124	110	13,7	1,2	52 551-032
40	G1 1/2	130	120	20,1	1,4	52 551-040
50	G2	155	120	31,4	2,3	52 551-050

→ = Направление потока

 $Kvs = m^3/4$ при перепаде давления в 1 бар и полностью открытом клапане.


Аксессуары

Измерительные штуцеры

Макс. 120°С (кратковременно 150°С)

L	№ изделия
44	52 179-014
103	52 179-015

Удлинитель для измерительного штуцера M14x1

Удобен при применении изоляции

d	L	№ изделия
M14x1	71	52 179-016

Измерительный штуцер

Удлинители 60 мм (не для 52 179-000/-601). Может быть установлен без дренажа системы.

L	№ изделия
60	52 179-006

Измерительный штуцер

Для старых моделей STAD и STAF Maкc. 150°C

L	№ изделия
30	52 179-000
90	52 179-601

Ручка

В сборе

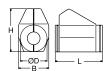
№ изделия
52 186-003

Табличка с данными

Прилагается к каждому клапану при поставке

№ изделия
52 161-990

Регулировочный ключ


[MM]		№ изделия
3	Предварительная	52 187-103
	настройка	
5	Дренаж	52 187-105

Дренажный комплект

Может быть установлен в процессе эксплуатации

d	№ изделия
G1/2	52 179-990
G3/4	52 179-996

Изоляция

Для систем тепло- и холодоснабжения. Подробную информацию о изоляции вы можете найти в каталоге.

Для DN	L	Н	D	В	№ изделия
10-20	155	135	90	103	52 189-615
25	175	142	94	103	52 189-625
32	195	156	106	103	52 189-632
40	214	169	108	113	52 189-640
50	245	178	108	114	52 189-650

