

Actuator SQM40.../SQM41...

Actuators for air and gas dampers

- Electromotoric actuator up to $10 \mathbf{N m}$
- Clockwise and counterclockwise variants
- Running times from 15 and 30 seconds
- Various shaft ends available
- Electronic version with analog control input
- Internal position indication
- Drive shaft can be disengaged
- UL approval

The SQM40...ISQM41... and this Data Sheet are intended for use by OEMs which integrate the actuators in their products!

The SQM40.../SQM41... actuators are suited for driving flow control valves, butterfly valves, dampers or for use on other applications that require rotary motion.
Areas of application are oil and gas burners of medium to higher capacity as well as thermal process plants.

The actuators are used primarily for load-dependent control of the flow of gas, oil and combustion air:

- In connection with 3-position or modulating controllers (e.g. $4 . . .20 \mathrm{~mA}$), or
- Directly by burner controls

To avoid injury to persons, damage to property or the environment, the following

 warning notes must be observed!
Only qualified personnel may open, interfere with or modify the actuators!

- Read the documentation on the actuators carefully and fully. If not observed, dangerous situations might occur
- All product-related activities (mounting, settings and maintenance) must be performed by qualified and authorized personnel

Caution!

- Risk of electric shock hazard - to disconnect the actuator from power, it may be necessary to open more than one switch. Before performing maintenance work, the actuator must be disconnected from power
- The electrical connection between the conduit fittings is not made automatically. It must be established on installation site
- The connecting plate is made of plastic and does not provide earthing of the conduit fittings. Earthing must be ensured by adequate washers and wire links
- To provide protection against electric shock hazard, the connecting terminals must have adequate touch protection. Make certain that non-insulated connections or wires cannot be touched
- Each time work has been carried out (mounting, installation, service work, etc.), check to ensure that wiring is in an orderly state
- Fall or shock can adversely affect the safety functions. Such actuators must not be put into operation even if they do not exhibit any damage
- Static charges must be avoided since they can damage the actuator's electronic components when touched.
Recommendation: Use ESD equipment

Notes on use in North America

- Use of flexible conduit including adequate accessories is mandatory
- Use of copper wiring is mandatory
- All circuits of class 2 must use cables type CL3, CL3R, CL3P or comparable types, OR
All circuits are wired according to class 1 (electrical light or power circuits)
- Ensure that the relevant national safety regulations and notes on standards are complied with
- In geographical areas where DIN regulations apply, the mounting and installation requirements of VDE must be satisfied, especially DIN/VDE 0100, 0550 and DIN/VDE 0722
- Make certain that the actuator is not exposed to direct solar radiation
- Required tightening torques:
- Cover screws: 3.5 Nm
- Connecting cover: 2 Nm

SQM40...

SQM41...

Figure: Note for direction of rotation

- Ensure that the electrical wiring is in compliance with national and local safety regulation
- Make certain that strain relief of the connected cables conforms to the relevant standards (e.g. as per DIN EN 60730 and DIN EN 60335)
- Ensure that spliced wires cannot get into contact with neighboring terminals. Use adequate ferrules
- Unused terminals of the SQM40.../SQM41... must be covered by dummy plugs
- When making the wiring, the AC 120 V or AC 230 V section must be strictly separated from other voltage sections, thus ensuring protection against electric shock hazard
- The mechanical coupling between actuators and controlling elements must be formfitted
- The actuators must always be powered via a prefuse of max. 6,3 AT (as per DIN EN 60127 2/5)
- For the protective earth connection, the housing of all models has a marked earth terminal

Marking of the voltage ranges SQM40...ISQM41...:

Figure: Electrical connection of the SQM40.../SQM41...

Note

SELV or PELV depends on the safety class of the connected components. In the case of PELV, the relevant component is connected to protective earth.

The mechanical setting facility for the cam switches is physically separated from the connection terminals. When the actuator is disconnected from power, the switches can be adjusted via a scale. The switching points can be changed via adjusting screws. The scale indicates the angles of the switching points.

Note
Potentiometers for adjustment of the modulation limits:

Note

Usable range for the potentiometers:

Standards and certificates

C ϵ

- Electromagnetic compatibility EMC (immunity)

2004/108/EC

- Low-voltage directive

ISO 9001: 2008
Cert. 00739

ISO 14001: 2004 Cert. 38233

For use in US/Canada where the power supply lines require a connection facility for flexible conduit, the actuator's product no. includes type suffix «R» (see following example). These products are UL-listed.

Example: SQM40.264R10

Disposal notes

The unit contains electrical and electronic components and must not be disposed of together with domestic waste.
Local and currently valid legislation must be observed.

Housing
Drive motor

Couplings

Cam shaft drive

Adjustment of switching points

Position indicator

Electrical connections

Gear train

Drive shaft
Actuator fixing

- Housing parts made of die-cast aluminium
- Covers made of impact-proof and heat-resistant plastic
- Stall-proof synchronous motor
- Shaft can be disengaged from motor by coupling (pressing coupling pin «K1»)
- Automatic reengagement
- Disengagement of drive shaft / motor by pressing coupling pin «K1»

- Non-reactive gear
- With adjustable cams
- Scales beside the cams indicate the angle of the switching point
- Internally
- Scale $0 . . .90^{\circ}$ at the base of the cam assembly
- Scale range to direction of rotation with arrow and «R» or «L» marked
- RAST3.5 screw terminals are enclosed, depending on the PCB variant
- RAST5 screw terminals are enclosed, depending on the PCB variant
- Optional: Insulation displacement connectors
- Wiring through connecting cover
- Easy insertion of cables through large openings in the housing
- Maintenance-free gearwheels and bearings
- Different shaft versions available
- Fixing holes at housing bottom (drive shaft side), like SQM45.../SQM48... with screws M5 or, alternatively, SQM10.../SQM20... front mounting with self-tapping screws M5

Type summary (other types on request)

Product no.		ion tion	Torque	U 든 늘 U	$\begin{aligned} & \underset{y}{0} \\ & \underset{\sim}{\infty} \end{aligned}$	P 	B 		$\begin{aligned} & \frac{\underset{\sigma}{0}}{\omega} \\ & \underset{\sim}{0} \end{aligned}$	Shaft no.	Re v ?	onal ion の	Ope vo $\begin{aligned} & \text { B } \\ & \text { N} \\ & \stackrel{U}{4} \end{aligned}$	ting ge Z N్ Ũ	Pot $\begin{aligned} & \frac{0}{O} \\ & \stackrel{=}{\bar{\omega}} \end{aligned}$	ntioer 0 0 0 0 0
SQM40.141A21	\bigcirc		5Nm/15s	\bigcirc				3		1	\bigcirc			\bigcirc	\bigcirc	
SQM40.144R11	\bigcirc		$5 \mathrm{Nm} / 15 \mathrm{~s}$	\bigcirc				3		4		\bigcirc	\bigcirc		\bigcirc	
SQM40.145A21	\bigcirc		$5 \mathrm{Nm} / 15 \mathrm{~s}$	\bigcirc				3		5	\bigcirc			\bigcirc	\bigcirc	
SQM40.145R11	\bigcirc		5Nm/15s	\bigcirc				3		5		\bigcirc	\bigcirc		\bigcirc	
SQM40.161A20	\bigcirc		5Nm/15s		\bigcirc	\bigcirc		6		1	\bigcirc			\bigcirc		
SQM40.164R11	\bigcirc		5Nm/15s		\bigcirc	\bigcirc		6		4		\bigcirc	\bigcirc		\bigcirc	
SQM40.165A20	\bigcirc		$5 \mathrm{Nm} / 15 \mathrm{~s}$		\bigcirc	\bigcirc		6		5	\bigcirc			\bigcirc		
SQM40.165A21	-		5Nm/15s		\bigcirc	\bigcirc		6		5	\bigcirc			\bigcirc	\bigcirc	
SQM40.165R11	\bigcirc		5Nm/15s		\bigcirc	\bigcirc		6		5		\bigcirc	\bigcirc		\bigcirc	
SQM40.171A20	\bigcirc		$5 \mathrm{Nm} / 15 \mathrm{~s}$		\bigcirc		\bigcirc	5	1	1	\bigcirc			\bigcirc		
SQM40.174R10	\bigcirc		5Nm/15s		\bigcirc		\bigcirc	5	1	4		\bigcirc	\bigcirc			
SQM40.175A21	\bigcirc		5Nm/15s		\bigcirc		\bigcirc	5	1	5	\bigcirc			\bigcirc	\bigcirc	
SQM40.241A11	\bigcirc		10Nm/30s	\bigcirc				3		1	\bigcirc		\bigcirc		\bigcirc	
SQM40.241R11	\bigcirc		10Nm/30s	\bigcirc				3		1		\bigcirc	\bigcirc		\bigcirc	
SQM40.241A21	\bigcirc		10Nm/30s	\bigcirc				3		1	\bigcirc			\bigcirc	\bigcirc	
SQM40.244A21	\bigcirc		10Nm/30s	\bigcirc				3		4	\bigcirc			\bigcirc	\bigcirc	
SQM40.244R11	\bigcirc		10Nm/30s	\bigcirc				3		4		\bigcirc	\bigcirc		\bigcirc	
SQM40.245A11	\bigcirc		10Nm/30s	\bigcirc				3		5	\bigcirc		\bigcirc		\bigcirc	
SQM40.245A21	\bigcirc		10Nm/30s	\bigcirc				3		5	\bigcirc			\bigcirc	-	
SQM40.245R11	\bigcirc		10Nm/30s	\bigcirc				3		5		\bigcirc	\bigcirc		\bigcirc	
SQM40.247A21	\bigcirc		10Nm/30s	\bigcirc				3		7	\bigcirc			\bigcirc	\bigcirc	
SQM40.261A11	\bigcirc		10Nm/30s		\bigcirc	\bigcirc		6		1	\bigcirc		\bigcirc		\bigcirc	
SQM40.261R11	\bigcirc		10Nm/30s		\bigcirc	\bigcirc		6		1		\bigcirc	\bigcirc		\bigcirc	
SQM40.261A20	\bigcirc		10Nm/30s		\bigcirc	\bigcirc		6		1	\bigcirc			\bigcirc		
SQM40.261A21	\bigcirc		10Nm/30s		\bigcirc	\bigcirc		6		1	\bigcirc			\bigcirc	\bigcirc	
SQM40.261A22	\bigcirc		10Nm/30s		\bigcirc	\bigcirc		6		1	\bigcirc			\bigcirc		\bigcirc
SQM40.264A21	\bigcirc		10Nm/30s		\bigcirc	\bigcirc		6		4	\bigcirc			\bigcirc	\bigcirc	
SQM40.264R11	\bigcirc		10Nm/30s		\bigcirc	\bigcirc		6		4		\bigcirc	\bigcirc		\bigcirc	
SQM40.265A11	\bigcirc		10Nm/30s		\bigcirc	\bigcirc		6		5	\bigcirc		\bigcirc		\bigcirc	
SQM40.265A21	\bigcirc		10Nm/30s		\bigcirc	\bigcirc		6		5	\bigcirc			\bigcirc	\bigcirc	
SQM40.265R11	\bigcirc		10Nm/30s		\bigcirc	\bigcirc		6		5		\bigcirc	\bigcirc		\bigcirc	
SQM40.265A20	\bigcirc		10Nm/30s		\bigcirc	\bigcirc		6		5	\bigcirc			\bigcirc		
SQM40.267A20	\bigcirc		10Nm/30s		\bigcirc	\bigcirc		6		7	\bigcirc			\bigcirc		
SQM40.271A20	\bigcirc		10Nm/30s		\bigcirc		\bigcirc	5	1	1	\bigcirc			\bigcirc		
SQM40.271R10	\bigcirc		10Nm/30s		\bigcirc		\bigcirc	5	1	1		\bigcirc	\bigcirc			
SQM40.274R10	\bigcirc		10Nm/30s		\bigcirc		\bigcirc	5	1	4		-	\bigcirc			
SQM40.275A20	\bigcirc		10Nm/30s		\bigcirc		\bigcirc	5	1	5	\bigcirc			\bigcirc		
SQM40.275A21	\bigcirc		10Nm/30s		\bigcirc		\bigcirc	5	1	5	\bigcirc			\bigcirc	\bigcirc	

Type summary (cont'd) (other types on request)

Product no.	Direction of rotation		Torque		$$		B 		$\begin{aligned} & \stackrel{\underset{\omega}{0}}{\stackrel{1}{\infty}} \\ & \hline \end{aligned}$	Shaft no.			Operating voltage			
SQM41.141A21		\bigcirc	5Nm/15s	\bullet				3		1	\bullet			\bullet	\bullet	
SQM41.144R11		\bullet	5Nm/15s	\bullet				3		4		\bullet	\bullet		\bullet	
SQM41.145A21		\bigcirc	5Nm/15s	\bigcirc				3		5	\bullet			\bullet	\bigcirc	
SQM41.145R11		\bullet	5Nm/15s	\bullet				3		5		-	-		\bullet	
SQM41.164R11		\bullet	5Nm/15s		-	\bullet		6		4		\bullet	\bullet		\bullet	
SQM41.165R11		\bullet	5Nm/15s		-	\bullet		6		5		-	\bigcirc		\bullet	
SQM41.174R10		\bigcirc	5Nm/15s		-		\bullet	5	1	4		\bigcirc	\bigcirc			
SQM41.241A11		\bigcirc	10Nm/30s	\bigcirc				3		1	\bullet		\bigcirc		\bigcirc	
SQM41.241R11		\bullet	10Nm/30s	\bullet				3		1		\bullet	\bigcirc		\bullet	
SQM41.241A21		\bullet	$10 \mathrm{Nm} / 30 \mathrm{~s}$	\bullet				3		1	\bullet			\bigcirc	\bullet	
SQM41.244A21		\bigcirc	10Nm/30s	\bigcirc				3		4	\bigcirc			\bullet	\bigcirc	
SQM41.244R11		\bullet	10Nm/30s	\bullet				3		4		\bullet	\bullet		\bullet	
SQM41.245A11		\bigcirc	10Nm/30s	\bullet				3		5	\bullet		-		\bullet	
SQM41.245A21		-	$10 \mathrm{Nm} / 30 \mathrm{~s}$	\bullet				3		5	\bullet			-	-	
SQM41.245R11		\bigcirc	10Nm/30s	\bullet				3		5		\bigcirc	\bigcirc		\bullet	
SQM41.261A11		\bullet	$10 \mathrm{Nm} / 30 \mathrm{~s}$		\bigcirc	\bullet		6		1	\bullet		\bigcirc		\bullet	
SQM41.261R11		\bullet	10Nm/30s		\bigcirc	\bigcirc		6		1		-	\bigcirc		\bigcirc	
SQM41.261A21		-	$10 \mathrm{Nm} / 30 \mathrm{~s}$		-	\bigcirc		6		1	\bullet			\bullet	\bullet	
SQM41.264A21		\bullet	10Nm/30s		\bullet	\bullet		6		4	\bullet			\bullet	\bullet	
SQM41.265R11		\bullet	10Nm/30s		-	\bigcirc		6		5		\bigcirc	\bullet		\bullet	
SQM41.267A21		\bullet	$10 \mathrm{Nm} / 30 \mathrm{~s}$		-	\bullet		6		7	\bullet			\bullet	\bullet	
SQM41.271R10		\bullet	10Nm/30s		\bullet		\bullet	5	1	1		\bullet	-			
SQM41.274R10		-	10Nm/30s		-		\bigcirc	5	1	4		\bullet	-			
SQM41.275A21		\bullet	$10 \mathrm{Nm} / 30 \mathrm{~s}$		\bullet		\bullet	5	1	5	\bullet			\bullet	\bullet	

Note
Not all types of actuators are available ex stock. Additional versions are available on request.

Drive shafts:

Type of drive shaft	Max. torque	Shaft no.
$\varnothing \mathbf{1 0 ~ m m}$, woodruff key as per DIN 6888	10 Nm	1
$\square 9.5 \mathrm{~mm}$, equivalent to drive shaft of Honeywell Mod. III	10 Nm	4
$\varnothing 10 \mathrm{~mm}$ D type shaft, compatible with SQM45...	10 Nm	5
$\varnothing \mathbf{1 4 ~ m m}$ with parallel key as per DIN 6885, compatible with SQM48...	10 Nm	7

- Woodruff key or parallel key
- Connectors depending on the PCB variant

Front cover

(on request)
For making the connections for the power supply lines

- For 1/2" NPT protective sleeve
- For metric cable gland

Note

Connecting covers are used depending on the application. The actuators come with the covers prefitted.

Terminal kits

- For replacement
- For SQM4x.x4x.xxx

AGA45.4

- For SQM4x.x6x.xxx and SQM4x.x7x.xxx

AGA45.6

Technical Data

General unit data	Operating voltage - SQM4x.xxxA1... - SQM4x.xxxA2... - SQM4x.xxxR1... - SQM4x.xxxR2...	AC 120 V-15\%/+10\% AC $230 \mathrm{~V}-15 \% /+10 \%$ AC $120 \mathrm{~V}-15 \% /+10 \%$ AC $230 \mathrm{~V}-15 \% /+10 \%$
	Operating frequency	$50 . . .60 \mathrm{~Hz} \pm 6 \%$
	Drive motor	Synchronous motor
	Power consumption	10 VA
	Operating angle	Adjustable between 0 and max. 90°
	Mounting position	Optional
	Degree of protection	IP66/Nema 4
	External overload fuse	Max. 6,3 AT (slow) to DIN EN 60127/2-5
	Cable entry	$2 \times$ M16 without thread or $2 \times 1 / 2 "$ NPT thread
	Direction of rotation	Facing the shaft end: counterclockwise or clockwise
	Torque (Holding torque $=$ driving torque $\times 50 \%$)	5 or 10 Nm , depending on type ${ }^{1)}$ For torques refer to nominal operating conditions
	Running time	15 s and 30 s, depending on type ${ }^{1)}$
	End and auxiliary switches - Type - Switching voltage - Switching capacity	To DIN 41636 AC $24 . . .250 \mathrm{~V}$ $1 \mathrm{~A}, \mathrm{AC} 250 \mathrm{~V}$
	Number of end switches	2
	Number of auxiliary switches	Max. 4
	Drive shaft	Supplied as standard, not replaceable
	Weight	Approx. 2 kg
	1) At 60 Hz frequency, running times are about	\% shorter and torques lower by the same rate.
Analog inputs	General	
	Linearity	<5\%
	Control range	0... 90°
	Voltage setpoint	DC 2... 10 V
	X1-1 (U-IN), X1-2 (GND)	
	- Umin	DC 2 (0) V
	- Umax	DC 10 V
	Input impedance	$\geq 5 \mathrm{k} \Omega$
	Current setpoint	DC 4... 20 mA
	X1-3 (I-IN), X1-2 (GND)	
	-Imin	DC 4 (0) mA
	- Imax	DC 20 mA
	Input impedance	$\leq 500 \Omega$
	Impedance setpoint	0... 135Ω
	X1-4, X1-5, X1-6 (GND)	
	- RNominal	$135 \Omega \pm 5 \%$

Conductive plastic potentiometer	Operating voltage	DC 10 V
	Permissible hysteresis	$0,2 \%$ of 90° or 135°
	Total resistance tolerance	$\pm 20 \%$
	Effective angular rotation	90° or 135°
	Terminal strip	Triple-pole
	For cross-sectional areas of	0,5... $1 \mathrm{~mm}^{2}$
	Wiper current rating	Max. $100 \mu \mathrm{~A}$
	Transfer resistance of wiper contact	Max. Rü $\leq 100 \Omega$
	Linearity (referred to Rges = 1000Ω)	$\pm 1 \%$
	Smoothness (alpha $=10^{\circ}$) / microlinearity	<0,1\%
	Life cycle	Approx. 2 million switching cycles
For use in North America	Cross-sectional area of the power supply lines	
	$\begin{aligned} & \text { For SQM4x.x6.../SQM4x.x7... (X1)/(X2)/ } \\ & \text { (X3), SQM4x.4... (X2) } \end{aligned}$	Class 1 Min. AWG 16 Suited for $105^{\circ} \mathrm{C}$ Max. $2.5 \mathrm{~mm}^{2}$ or AWG 14
	For SQM4x.x4... (X1)	Class 2 Min. AWG 22 Suited for $105^{\circ} \mathrm{C}$ Max. $1 \mathrm{~mm}^{2}$ or AWG 18
Environmental conditions	Storage	DIN EN 60721-3-1
	Climatic conditions	Class 1K3
	Mechanical conditions	Class 1M2
	Temperature range	$-20 . . .60{ }^{\circ} \mathrm{C}$
	Humidity	<95\% r.h.
	Transport	DIN EN 60721-3-2
	Climatic conditions	Class 2K3
	Mechanical conditions	Class 2M2
	Temperature range	$-20 . . .60{ }^{\circ} \mathrm{C}$
	Humidity	<95\% r.h.
	Operation	DIN EN 60721-3-3
	Climatic conditions	Class 3K5
	Mechanical conditions	Class 3M4
	Temperature range	$-20 . . .60{ }^{\circ} \mathrm{C}$
	Humidity	<95\% r.h.

Range adjustment

Adjust the range of the analog signal to match the switch positions (min. and max. position):

1. Set cam I to the required high-fire position (e.g. 85°; position is indicated on the scale next to the cam).
2. Set cam V to the required low-fire position (e.g. 20°).
3. Preset the signal at the analog input according to the required high-fire position (e.g. 20 mA).
4. Turn the potentiometer for maximum angular rotation
a) clockwise, if the actuator has not yet reached its maximum angular rotation, or
b) counterclockwise until the actuator starts
5. Preset the signal at the analog input according to the low-fire position (e.g. 4 mA).

6 . Turn the potentiometer for minimum angular rotation
a) counterclockwise, if the actuator has not yet reached its minimum angular rotation, or
b) clockwise until the actuator starts

Modulation always takes place between high- and low-fire.
Also, it is possible to define a closed position or a separate ignition position by setting cam VI (independent of cam V , e.g. for defining a position higher than the low-fire position).

Connection terminals (cont'd)
SQM4x.x6xxx
3 -position version with 2 end switches and 4 auxiliary switches

SQM4x.x7xxxx
2-position version with 2 end switches and 3 auxiliary switches

Mains voltage terminals		Design	
X3-1	AUX (VI) NO	Output	AC 120 V/AC 230 V max. 1 A
X3-2	AUX (VI) NC	Output	AC 120 V/AC 230 V max. 1 A
X3-3	AUX (VI)	Input	AC 120 V/AC 230 V
X2-1	Mains voltage	Input	AC 120 V/AC 230 V
X2-2	Opening/closing (changeover switch)	Input	AC 120 V/AC 230 V
X2-3	Open position reached	Output	AC 120 V/AC 230 V max. 1 A
X2-4	Closed position reached	Output	AC 120 V/AC 230 V max. 1 A
X2-5	Ignition position reached	Output	AC 120 V/AC 230 V max. 1 A
			AC 120 V/AC 230 V
X1-1	Startup in ignition position	Input	Output
X1-2	AUX (IV) NO 120 V/AC 230 V		
max. 1 A			

Example for SQM40... (CCW)

Example for SQM41... (CW)

Note!
The setting of the switch position must be checked.

SQM4x.x4...

Electronic version		Preadjustment
Cam I	High-fire	90°
Cam II	Not used	---
Cam III	Not used	---
Cam IV	Not used	---
Cam V	Low-fire	10°
Cam VI	OFF/ignition	0°

SQM4x.x6...

3-position version		Preadjustment
Cam I	High-fire	90°
Cam II	OFF/low-fire	0°
Cam III	Ignition position	10°
Cam IV	Auxiliary switch	30°
Cam V	Auxiliary switch	30°
Cam VI	Auxiliary switch	30°

SQM4x.x7...

2-position version		Preadjustment
Cam I	High-fire	90°
Cam II	OFF/low-fire	0°
Cam III	Ignition position	10°
Cam IV	Auxiliary switch	30°
Cam V	Not used	---
Cam VI	Auxiliary switch	30°

Dimensions in mm

SQM40.../SQM41...

